Chapter 2: Work, Energy & Power

♦ 1. Work

- Work is done when a force causes displacement in an object.
- Formula:

 $W=F\times S\times cos\theta$

Where:

F = Force,

S = Displacement,

 θ = Angle between force and displacement

• Units:

SI Unit = Joule (J),

 $1 J = 10^7 \text{ erg (CGS unit)}$

• Special Cases:

○ $\theta = 0^{\circ} \rightarrow Maximum Work$

 $\theta = 90^{\circ} \rightarrow Zero Work$

○ $\theta = 180^{\circ} \rightarrow \text{Negative Work}$

◆ 2. Energy

- **Energy** is the capacity to do work.
- Units: Joule (J), kilojoule (kJ), calorie (1 cal = 4.18 J), kilowatt-hour (1 kWh = 3.6×10^6 J)
- Types of Energy:
 - Mechanical Energy = Potential + Kinetic
 - **Potential Energy** (PE):

PE=mgh

• Kinetic Energy (KE):

 $KE = \frac{1}{2}mv^2$

- Other Forms:
 - Heat, Light, Chemical, Sound, Electrical, Nuclear, Magnetic, etc.

♦ 3. Power

• **Power** is the rate at which work is done.

$$P = \frac{w}{t}$$

- Units:
 - o SI Unit: Watt (W)

- o Larger Units: Kilowatt (kW), Megawatt (MW), etc.
- o 1 HP (Horsepower) = 746 W
- Average Power:

$$P_{avg} = \frac{\textit{Total work done}}{\textit{Total time taken}}$$

♦ 4. Commercial Unit of Energy

- 1 kilowatt-hour (1 kWh) = $1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J}$
- Used in electricity bills.

♦ 5. Law of Conservation of Energy

- Energy can neither be created nor destroyed.
- It only **transforms** from one form to another.
- Total energy in an isolated system remains constant.

♦ 6. Practical Examples

• **Hydroelectric Dam**: $PE \rightarrow KE \rightarrow Electrical$

• **Spring Toy**: Elastic → Mechanical

• **Battery**: Chemical → Electrical

• Solar Panel: Solar → Electrical

• Fan: Electrical → Mechanical

♦ 7. Key Equations to Remember

Concept	Formula
Work	$W = FS\cos\theta$
Kinetic Energy	$KE = \frac{1}{2}mv^2$
Potential Energy	PE=mgh
Power	$P=\frac{w}{t}$
Energy Conversion	$1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$

